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ABSTRACT

A new interpietation is given, whicl provides another way of understandinig

the structure of the species problem and sheds light on the properties of a general cover-

age problem. As an illustrative example, the popular Turing-Good-Robbins estimator is
"shown" to be a natural choice from this interpretation in the species problem. We set up

a general framework of various coverage problems in this paper. The new interpretation is

applied to this general situation which leads to many interesting applications in addition

to the species problem. The coverage problems considered in this paper include the species

problem, the problem of estimating the volume of a convex set, and the missile-coverage

problem. It is pointed out that the genral estimators derived from this new interpreta-

tion usually estimate the probabilistic phenomenon involving only "n - 1" observations

which may not be appropriate. A general modified procedure is thus suggested to improve

the current estimators. To justify the interpretation theoretically, we present some limit

theorems in terms of species problem, even though the results are expected to hold more

generally.



Summary. A new interpretation is given, which provides another way of understanding

the structure of the species problem and sheds light on the properties of a general cover-

age problem. As an illustrative example, the popular Turing-Good-Robbins estimator is

, 'shown to be a natural choice from this interpretation in the species problem. We set up

a general framework of various coverage problems in this paper. The new interpretation is
applied to this general situation which leads to many interesting applications in addition
to the species problem. The coverage problems considered in this paper include the species

problem, the problem of estimating the volume of a convex set, and the missile-coverage

problem. It is pointed out that the genral estimators derived from this new interpreta-
tion usually estimate the probabilistic phenomenon involving only "n - 1 observations

w'hich may not be appropriate. A general modified procedure is thus suggested to improvc
the current estimators. To justify the interpretation theoretically, we present some limit

theorems in terms of species problem, even though the results are expected to hold more

generally. -w

1. Introduction

The problem of estimating the total probability of unseen species goes back to A.M.

Turing according to Good (1953). To describe the problem comprehensively, we use the

notation of Robbins (1956, 1968). Let {e, e2, C3 ...I bc the possible distinct species with

probabilities P1,P2,..., being selected in a single experiment. In n independent trials00

suppose that n, species appear r times, r-1,2,..., and rnr=n. We also use no to denote

the number of species which are not present in the sample. It is clear that n, n..., are

observable, but no is not. In fact no is infinite if there are infinitely many species. Let

{Xi = j) if and only if the ith trial results in outcome ej.

For r _> 0, let V,(r; n)=1 if the number of {Xi = j} is r and 0 otherwise. In particular,

the sum of the probabilities pi for those species which are not observed is
00

(1.1) C0 = pi j(0;n).

More generally, the sum of the probabilities of all species that are each represented r(r > 0) f]

times in the sample is

Co 8Y . ..

(1.2) Cr = p j j(r;n) .1st rLn,)t lo ..
J =I Avalnblity Code.

jA" V Iiand/or-
2 01St special

-- • -"I-A ," - , . ...a



To estimate Cr, Turing (see Good (1953)) suggested the formulas:

(1.3) (r + 1)n +1  for r > 0.n

Using a uniform prior, Good (1953) gave a derivation of these estimators from a

Bayesian point of view. Since then several other interpretations of these estimators have

appeared in the literature. These include Good (1953), Robbins (1956, 1968), and Diaconis

and Stein (1983) among others. Various justifications of this type of estimator have been

given. It should be noted that Robbins (196S) constructed an "unbiased" estimator for

Co which is very similar to (1.3). However, Robbins' estimator is justified through the

device of adding an additional trial to the original n observations. Here an estimator is

called "unbiased" for estimating a random variable if E(estimate) = E(random variable).

The problem continues to attract the attention of many researchers. To name a few: Starr

(1979), Clayton and Frees (1987), Estey (1986), Bickel and Yahav (1985), and Cohen and

Sackrowitz (1988). Most works concern the properties of the estimators of type (1.3); either

from asymptotic or decision theory points of view. As an important application, the species

problem is currently of great interest to researchers in automated speech identification

(Bahl et al (1983), Jelinek (1976), and Katz (1987) among others).

My object is to introduce another interpretation of these estimators which leads to

interesting applications other than the species problem. Later in this section we shall

outline my approach using the species problem as an illustrative example. As a consequence

it will become quite clear why the estimators of type (1.3) are "natural choices" in the

species problem.

In Section 2 a framework for a general coverage problem is introduced. Some general

estimates and their properties are derived using my interpretation. It is pointed out that

the general estimates (including (1.3) in the species problem) derived from the interpre-

tation are usually "biased" slightly upward. A general modified procedure is suggested to

reduce the biases. The success of this procedure depends heavily upon the nature of the

underlying problems. Although the biases are relatively small for many applications, their

reduction seems to be interesting from a theoretical point of view.

Section 3 consists of three subsections, 3.1-3.3, which display three special examples

as direct applications of the general framework established in Section 2. It seems to this

author that the range of potentially useful applications is broader than presented here. The

3



first example is a further discussion of the species problem. The second example concerns

the problem of estimating the volume of an arbitrary convex figurf- in Euclidean space.

The connection between the interpretation and the problem of estimating the volume of

a convex polyhedron was pointed out to me by Diaconis in a conversation. Some new

results related to this problem on the plane are given, and the structure of the problem on

higher dimensions is sketched heuristically. The last example deals with a missile-coverage

problem:
"n missiles are delivered and landing at a certain target arca which is usually larger

than the 'effective area' caused by the explosion of a single missile. The typical

questions we are interested in are: (1) if the (n+l)th missile is fired, what is the chance

that this additional missile would involve area which was not covered previously? (2)

How large is the newly covered area? (3) How many more missiles are needed to cover

90% of the target area?"

We shall provide most of the answers to these questions in Section 3.3.

Section 4 is rather technical, where we shall give some limit theorems in terms of the

species problem. In order to present the idea simply and clearly, we have chosen to treat

special cases, even though the results are expected to hold more generally.

The main purpose of this paper is to set up a framework including various coverage

problems so that the relevant parameters can be estimated by estimators which are obvious

choices through the interpretations. Now we shall use the species problem as an example

to give the flavor of the interpretation.

Suppose we are interested in the probability Cr in the species problem. Let -X,+,

denote the additional observation. The random probability Cr is identical to the following

conditional probability

(1.4) PJx,+l s(r)Xj,,x2,...,xn}

where S,(r) = { j; ti(r; n) = 1). Based on ,n observations, it is natural to estimate

(1.4) P{X, E S.-,,,(r)A.,) for all 1 < j < n

by IS.,.j()(Xi)
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where n

Anj- U{,j) , Sn-, 3 (r)= {i;vi(r;n -1)= 1)

and Vij(r; n - 1) = 1 if and only if i appear exactly r times in A,j.

With continuity property, it is expected that (1.4) and (1.4') are close to each other.

(A general discussion of this "closeness" is given in Section 2.) It is then natural to estimate

In

(1.5) E P{xj E Sn.-j(r)IAnj) by

(1.6) 3_- /.. cC,

j--1

Since

(1.7) Is._,, (r(XJ) = 1 = Xj E S,(r + 1),

the estimate (1.6) can thus be rewritten as

(1.8) (r + 1)?r+,

n

which is exactly the formula suggested by Turing and studied by Good (1953, 1956).

By taking expectation, we obtain

(1.9) E(P{Xn+j E S,(r)jX,,X 2,...,X}) = P{X,+, E S.(r)}

(1.10) E(P{X, E Sn..,(r)IAj})= P{Xn E SE _i(r)},ad

(1.11) E( jIs..A(r)(Xj)) = E ((r ) - P+Xn E S. 1(r)}

Therefore, (r+i)n,+, is an "unbiased" estimate of P{X, E S,_(r)X,,X2,... ,X_.1)

in the sense that both random quantities have the same expectation. This is contrasted

with the Robbins' arguments (1967) where "unbiasedness" was proved in the case r=0

through direct calculations. Here, the "unbiasedness" is shown more generally with no

calculation.



We saw that the estimator is the average of naive estimators based on samples of

size n - 1, and it estimates P(Xn E S, 1(r)), a probabilistic statement based on "n - 1"

observations. As an estimator of (1.4), (1.8) is biased. This bias is slight because (1.4)

changes lttle as n increases. In Section 3 we shall improve this estimator to reduce tile

bias which could be substantial in other problems for which this approach applies.

The key idea of this approach is to create requred information by temporarily

deleting one observation from the sample one at a time, and the required information

is obtained by comparing the deleted observation with the remaining n - 1

observations. The final estimate is obtained by taking the average

over these n steps, and it is no surnrise that the final estimator really estimates

the probabilistic phenomenon involving n - I observations. Even though the idea behind

the procedure is simple, it can be generalized to a fairly general model which is the subject

of the next section.

2. A General Coverage Problem

In this section we shall discuss a general coverage problem in which a random sample

X1,. ,X, of size n is observed from a certain probability space (Q, F, P). Let fl denote

a collection of certain subsets of a fixed set A in Rk , k > 1, whereas F and P are an

appropriate 6-field and a probability measure defined on F.

Typical sample outcomes of X 1,..., X, are n subsets of A. Consider all possible finite

intersections among (Xi}j' and A, it is easy to check that these intersections result in

a finite partition {A of A with 2" disjoint subsets of A. Let g be a well-defined

function from S1 to Rk. Some of the problems we wish to solve are the following:

Given a specified subset S,=S(X1 , X 2 , . . . , X,; P) of A, possibly depending on both Xn=

(X 1,X 2 ,.. ,X,) and P, estimate

(i) the probability that g(X,+i) E S,, given S,,. Furthermore, if all elements

in 1 are Lebesque-measureable, we are interested in estimating

(ii) the expected volume of 5, l X,,+, given S,,, and

(iii) the expected volume of S,+1 l S,, given S,, if additional sample X,,+, is

made.

We assume throughout this section that Sn is defined for every n > 1. The key idea can

best be described as a one-step "backward" procedure as follows. Let Xj be randomly

removed from the sample {X3, X 2 ,.  , X,), and let A,.,, denote the jth removed sample,

i.e, A,j= U {Xi). Let S._1j=S(A,,; P) be the specified subset of A based on the sample



A.j of size n - 1. We further define an indicator function

ISIJ(Xj) = (1 if g(Xi) E Sn.-,j
0 otberwise.

As pointed out in the previous section, our procedure will lead to some estimators

which estimate the probabilistic statements involving "n- " observations. For this reason,

we shall call them "(n - 1)-estimators" hereafter.

Instead of estimating the probability P(g(X.+I) E SISU) in (i), the "(n - 1)-

estimator" estimates P(g(X.) E S,-, IS.-,). The construction can be described as follows:

(i') In order to estimate P(g(X.) E S._ [Sn_1), note that the probability that g(Xi) E

S.-1,, can be estimated by l [g(X.)] empirically. In fact, this estimator is "ur.biased"

in the sense that

E(Is..,,j [g(Xj)]) = P{g(X.) E Sn-,} = E(P(g(X.) E Sn-, 1 S-))

Since X i is randomly removed from the sample, a final estimator ((n - 1)-estimator)

is thus

n IS--1 [9X1 ,

which is also "unbiased."

Likewise, instead of estimating (ii) we estimate

(ii') E(vol [S,-, n3X,,]jS,,-1)•

Consider the estimator vol [S.-,,j n Xj] V 1 _< j < n. It is clear that

E (vol[S._.,, n XJ)

=E (vol[S._i n X.])

= E (E (,.ol[S,, n X,]IS,,-,)

V 1<j<n,

the (n - 1)-estimator is thus

I Z vol[S,,..,j n.N)

7



and is also "unbiased."

For estimating

(iii') E (vols. n S.- S.-),

we consider the estimator vol [S.,j n S.,] V 1 5 j <5 n. Again, it is easy to see

E (vol[S,,. j n S.]) = E (vol[S,. n S.,])

= E (E(vol[S, n S..JJS._,))
Vlfjfn.

The final (n - 1)-estimator is

-Z vol[S.,_jj n S,,]

Remark. The assumptions made above about the sampling plan can be further relaxed.
In fact, one can check that the only assumption we need (to guarantee the conclusion) is
L(X,..., X.,IP)=L(Xi, X. 2,.., X,,,, IP) for any permutation 7r on { 1,2,..., n) for every

n. In particular, if (Xl,...,X,,) are exchangeable random elements, all the conclusions

discussed above still hold.

If S, = S(X 1,X 2,.. .,X,;P) = S(P) does not depend on X,, = (XI,X 2,...,X,), it

is easy to check that our interpretation will lead to an estimator which is the well known

estimator obtained by the empirical measure.

As estimators of (i), (ii), and (iii), these (n - 1)-estimators are all "biased." In many

applications the biases are slight because (i), (ii), and (iii) changed little as n increases.

We shall refer to this property as continuity property. However, in our general framework,

'his property is not automatically guaranteed. As a result, just how well these (n - 1)-
estimators estimate (i), (ii), and (iii) depends upon the forms of S. and S.-1. The following

proposition tells us that the sucess of using (n - 1)-estimators to estimate (i), (ii), and (iii)

depends on the "closeness" of Sn-1 to S..

Proposition 2.1. Assuminghl X is randomly choen from (01, F, P) and is independent
2f Sn-1(X1, X2,..., X,-1;P), S,(XJ, X2,..., X,;P) And S.+1(X1, X2,...-, X., Xn+;P).

Let g be a measurable function from (0, F, P) to R' such that o(t) E w for all w E Ql.

We further assume E vol(X)2 < 0o.

8



II

P{[X n is. u Sn-\S,, n S,,)] # } = 6. >0 for all n > 1,

then
(1) IP{g(X.+i) E S.} - P{g(Xn) E S-1}1 < ,, and

(2) E (vol[S. nX.+,]) - E (volS._, n x,,]) = 0(b).

If we further assume vol (A) < oo, then (2) becomes

(2') E (vollS. n X.+,]) - E (oliS,,, n X])= o(b,,).

Proof of (1)

It suffices to show

IP(g(X) E. S.) - P{ 9(X) E S-,}l 1< b.

Since

P{g(X) ES,,} - P{g(X) E S.-,)

= P{g(X) ES.\s._, } - P{g(X) E S,._.\S.

it follows from assumptions that both terms above are smaller than

P{[X f {n[S,, u S,,-.)\[S, n s.-, # ,} = 6.,

and the proof of (1) follows immediately.

Proof of (2) One can write

IE (vol[S. n x,+, ]) - E (vol[S,,_, n X,.])l

= jE (vol[S. n X] - vol[S._, n X])l

IE (volES, n X)\(S, n x)] - E (vol[(S,,_, n X)\(S. n X)])l

Both of the above terms are clearly bounded by

E (vol(X n IS, u S._ 1 \[S, n S,,]))
" E [vol(X). -IS-US.,,]J\lSnns.-,)(X))

< E [voO(X) 2 ] 6 , 0(6.)

9



This comploetes the proof of (2). If vol (A) < oo, then since vol (X) < vol(A) w.p.l.,

it follows that

E [vol(X)Is.,us._, \jsns..,](X)] < voI(A). 6 = O(6,)

which completes the proof of (2').

The "Biases" of (n - 1)-estimates

As we have shown, in (i), (ii), (iii), the proposed (n - 1)-estimates are "unbiased"

in estimating the probabilistic statemctr.s (involved only n - 1 observations), which are

different from those based on n observations. In other words, there would be some biases

if we use these (n - 1)-estimates.

To calculate the biases, we pretend the additional observation, X,+ 1 is taken. The

(n)-estimates obtianed by applying (i), (ii), and (iii) to this n + 1 observation should be
"unbiased." Therefore, the biases of (n - 1)-estimates can be evaluated by comparing these

(n - 1)-estimates with (n)-estimates. For example, as in (i), the (n - 1)-estimate is

1 n
n E Is._,., WAAx)]

and the (n)-estimate is

Sn+1
12 + E I S~.,j 1g(XA)

j=1

The "bias" of (n - 1)-estimate is thus

(2.1) E { is s..,J1g(X)A - + 1
3-1 .=1

where

n+1

Snj -S(An+ 1jp), and A.+Ij U {Xi) •

The bias term (2.1) can be calculated once the knowledge of "relationship" between

Sn-1 and S, is provided and this is possible only if the nature of the problems is specifically
given. In this case, as we shall see in the next section, some better estimators are always

10



available. Here, "better" means smaller "biases." The key idea of constructing these better

estimators is to estimate Xn+1 by the current sample {X,,...,X.,) first. The final estimate
is obtained as if we had "n + 1" observations. The idea is closely related to the idea of the

EM algorithm (see Dempster et al (1977)).

3. Examnles

3.1 Species Problems
In this section we shall continue our discussion of species problems introduced in Sec-

tion 1. The problem of estimating the total probability of unseen species can be put in the

framework of general coverage problem as in the previous section. Let E={ej, C2, .. ) be
the possible distinct species with probabilities pl,p2,..., being selected in a single experi-

ment. Let A denote the set of all positive integers. Let us make a natural correspondence
between the outcomes space E and set A by "c, - ." The correspondence allows us to

treat Xj as random variable such that {X = i) = the j'h trial results an outcome ci.
It follows that in this case fl=A,F = 2 A and P{X = i}=pj for i E A.
Having observed X 1 , X 2 ,..., X,, the collection of unseen species can be expressed as

S. - S(X,X,...,X;P)= - j;j V {X1,...,Xn}} CA .

Let g denote an identity map from Q1 to S1, i.e., g(i) = i. The problem of estimating
the total probability of unseen species is thus equivalent to estimating the probability of

g(X,,+) E S, given S,,. More precisely,

Pfg(X.+i) E S.IS,.)

According to the previous section, the (n - 1)-estimate as in (i') is

(-11 E s (V) =nn

where

I'

s._,,, = UjX,} = And

Suppose we want to estimate the total probability of all species that appear r(r > 1) times

in the sample. By a similar argument,

11



S.(r) =S(X, ,X2,.. ,X.; P, r)
ys

={nZ x,(j) = r,j e
=A

and

S"-l,=(r) S(A.,j;Pr)= {i; E Ix,,(i) =r, i E A)
6 1A~ *

Since

Xi E S.-.j(r) *.Xi E S,,(r + 1)

it follows from this fact that the (n - 1)-estimate in this case (as in (i') again) takes the

form

n(3.1.2)1 _ (_,.1)(x,)

j=1

which is formula (1.8).

The "Biases" of (n - 1]-estimntes. From (2.1) and (3.1.1), the "bias" of (n - 1)-estimate

in estimating P{X,.+1  SnIS,,} is

E n 1 +6

If n +1 i

1 1if X,+, , {X,. .. X

where 6 0 if Xn+i occurred at least twice among {X1, X2,..., X,
-1 if X,+ occurred once among fXl,... ,X,j.

It follows trivially that

1
(3.1.3) (bias of (n - I)-estimatel < 0 0(

11 + n

The knowledge between the relationship of S.-, to S. enables us to construct a "better"

estimate of which the bias is of order (dy) contrast with the order of (1) provided by the

previous (n - 1)-estimate. The construction can be described heuristically as follows.

12



Let n' denote the number of species appearing once in the sample {X 1 , X 2 , .., X,

X,+,}. Since X,,+, is missing, we cannot observe W'1, but instead we can estimate n1,
based on {X 1,X 2 ,. . . ,X,}). Let hl denote this estimate which is defined by

{A- = -n 1 +l with prob.i-L
S= n with prob. (1 - . - )

fl = n, - 1 with prob. 2-n,

The expected value of hi given (nj, n2 ,...) is

(3.1.4) E (h', 1(ni, 2 .. ) =ni +,in-' - 2n2n-'

The final estimate of estimating the total probability of unseen species in the sample

{X 1,.. .,X.) is

(3.1.5) E(i, I(,,. . . , )) = (,,, + ,n,- - 2, 2n- )
n+1 n+1

The fact that the bias of this estimate is of order 0(1) can be seen by noting that

(3.1.6) E(---,--,) , ,+ + -

fl nZf 71 1 z+1 n +

where n2 is the number of species appearing twice among {X 1 , .X2 ,..., X,, Xnv.+ }.

It is clear that In, - n'l < 1 and 12n12 - 2n' < 2 with probability one. It follows from

(3.1.5) and (3.1.6) that the absolute bias of (3.1.5) is bounded by ,(n+ 1 ), which is of order

One can mimic the above idea to find an estimator which is "better" than (3.1.2) in
estimating the total probability of all species tht appear r(r > 1) times in the sample. The

improved estimator is

(3.1.7) [(r + 1)n,+, +,+, ((,r + 1)n.+, - (r + 2)n,+ 2 )n-'I(n + 1)-'

which has smaller bias.

3.2 Estimating the Volume of a Convex Set in 3?.

The problem of estimating the volume of a certain convex set can be described as

follows:

13



Let V denote a certain unknown convex set with finite volume in Rk. The data in this

problem consists of independent random samples X1 , X 2,... , X. uniformly distributed

over V. The first question we want to ask is: having observed Xj, X2,..., X., how do we

estimate vol (V)?

To answer this question, we first write down the joint likelihood of Xl,..., X, as

r 1 1(3.2.1) Lik (XI, X 2 , -. -, X.IV) H [IV') lv(Xi)

where V, 1 '(X 1 ,X 2 , ... ,Xn) is the convex hull foried by {XI,X 2, ... XJ, and I(A C

B) = 1 if A C B, 0 otherwise.

It is easy to see from (3.2.1) that V,, the convex hull formed by {X 1iX 2 ,.. .,X},

is a sufficient statistic of V, according to Neyman's factorization theorem. This suggests

that a reasonable estimate of vol( V) should be a function of V,, the sufficient statistic of

V.

To construct an estimate of vol( V), we first consider the problem of estimating tile
conditional probability P(X,+1 E ,IV,,). As we shall see below, this problem can be

treated as a special case of our general coverage problem.

Let f! = V = A, and let F be the usual Borel field on V. Let P be the probability
measure uniformly distributed over V. Define g(u) = u, the identity map from V to V. If

we define S,,=S(X,.. .,X,,;P)=V,(XI,X 2 , . . .,X,), the (n - 1)-estimate of P(X,,+l E

vn Iv) is

(3.2.2) n I

where V.-,,i is the convex hull formed by U {X8). Since

P(x+ E VnlV.) = v _v) _ - vol(V)

it follows that

(3.2.3) vol(V) = voP(V)

14



Substitute P(X.+i E VIVn) by (3.2.2), the (in - 1)-estimate of vol(V) is

(3.2.4) n;.,v n FoIV. ). -1

i=i

Like Section (3.1), the estimates (3.2.2) and (3.2.4) can be further improved. From

(3.2.2), the (n - 1)-estimate of P(X.+, f VnIl ) is

(3.2.5) 1 Iv._ 1 3 (X)J -- # of vertices of Vn
Ell V n

Let vtx (U) denote the set of vertices of a convex polyhedron U in k, applying the

similar idea of (3.1.4)-(3.1.7) to the current situation, we end up with a modified estimate
(Of P(Xn+i V 1"nVn))

#{vtx(V1)} + - ZI#{vtx(n)}- # vtx(1_ij)

(3.2.6) j= +n+1

where # {vtx (U)}= number of vtx(U) for a convex polyhedron U. The modified estimates

of P(Xn+ E VnIV,,) and vol(V) are thus

(3.2.7) 1 - {#{vtx(V.)) + I j=#{vtxC .)} - #{vtx(Vi,3 )})(n + 1) - '

and

(3.2.8) vol(V). {1 - [#{vtx(Vn)) + 1_ Z##{vtx(Vn)} - #{vtx(V._.,,)}]](n + 1) - })1n 1.:[lvxl

respectively.

It is not difficult to check that the "biases" of estimates (3.2.6) and (3.2.7) are of

smaller order (0(;r), in fact) than those of (n-I)-estimates provided by (3.2.5) and (3.2.2).

Since the arguments to verify this fact are very similar to those givcn in Section 3.1, we

omit it.
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The problem of estimating the volume of newly covered area if an additional observa-

tion Xn,+ is taken can thus be estimated by the (n-1)-estimate.

(3.2.9) 1 vol[V,,\V,,_,j] n (say)

where

Irl

An= U{V.\V._,,j
j=1

A "better" estimate, using the similar idea of (3.1.4)-(3.1.7) again, can be expressed as

vol(A,,) + - E [vol(A,,)- .o(A._,.))

(3.2.9') j= nn+l

where

vol(A_,) = vol[,_,.1 \V,,_2,jj]
is)i

and V'-2,jj, is the convex hull formed by U {Xh }.

Before we move on to the next application, let us consider a simple example which

may add some heuristic feeling to what we have done so far.

Example 3.1. Suppose X,,X 2 ,. .. ,X. are iid from U(,0 2 ), with unknown parameter 01

and 02. The "volume" (length, in fact) of the current convex set is 02 - 01. Let X(,) <

X(2) ... , < X(n be the ordered values of {Xi~)!'. It follows from previous discussion, the

(n-1)-estimate of P (X.+I E (Xil),X(n))I(X(),X(.)) is

(3.2.10) 1 LIv. 1.(A = _.

In fact, from (i) of Section 2 this (n-l)-estimate is an unbiased estimate of P(X. E

(X(,),X(._))) based on n-1 observations (X)' . The "better" estimates of P(X,,+, E

(X(i),X(,))I(X),X))) and 02 -01, are (from (3.2.7)) thus

16



(3.2.11) 2 =- I
n+1 n+1

and

nii

(3.2.12) (X(,.) - X())- 
n-1

respectively.

It is heuristically clear that the volume of V,, would tend to the volume of V as n goes

to infinity. It is desired to find the rate (and distribution, if possible) that how fast the

volume of V,, tends to that of V as n becomes large. As an application, we shall show in

the following that the problem can be solved in R via the interpretation together with a

recent result of Groeneboom (19S8). Let N, be the number of vertices of Vn. If V is a

convex polygon in W with r edges, it was shown in 3?6nyi and Sulanke (1963) that

EN,, _r log n as n --+ oo.

It was also shown in the same paper that -A --# constant if V has a smooth boundary in
R2 . Since then much work has been done in this direction: Efron (1965), Geffroy (1959,

1961), Raynaud (1970), Eddy and Gale (1981), Buchta (1984), and Schneider (1987) among

othcrs.

In his recent paper, Groeneboom (198S) obtained some interesting results which will

be stated as a proposition.

Proposition 3.1. (Groeneboom (198S))

(1) If V is a convex polygon with r vertices, then, ps n ---00,

(N. - 2r logn)/LOr logn .'-.N(0, 1)

(2) If V is the unit disk on the plane, then, n n " 0o,

(N. - 27rCn)/.,V 2 7C'n/ 4((0,1),

where Ci. C, are two positive constants between zero and one.

From (3.2.5), the (n-1)-estimate - is an unbiased estimate of

P(Xn 4 '1.)1- that is,

17



E(N~)= r[vol(V) - E(vo(V._ ))]E(.,)=
vol(V)

It follows that

(3.2.13) E(AN.) =[vol(V) - E(vol(V,,))]
vol(V)

3 r log n + o((log n) + '/ 2 ) if V is a polygon with r vertices
_2rC, n 1 + o(n + 1/6) if V is the unit disk.

Combining (3.2.13), Proposition 3.1, and the fact that - is an unbiased estimate of

P(X. V,- 1), we have proved the following result.

Theorem 3.1

(1) If V is a convex polygon with r (r > 3) vertices, then, as n - oo,

(3.2.14) n - P(X, I-)]/ 7 rlog LN(0, 1)

N,, i /10

(3._2,5 n[ 217,+ r log]/ 1,.o - N(0, 1)

(3.2.16) [L vol(V) - Elvol(V\V.,)L/ [ rlog n - 0ol(V) .N(O,1)

and

(2) If V is the unit disk in the plane, then, as n - oo, we have

P(X. €V._1) ;- 0(,, )

and

(3.2.17) n,[ -n (2 ,-_,i]// $N(o,1

18



(3.2.18) n1 n vol(V,,) - Evol(V\V)1}/2'/2-7'2 vol(V).$N(O, 1)

Note that (3.2.16) follows from the fact that

E(vol(V\VI._,)) = vol(V)P(Xn 0 V._,)

and

-- [vol(,,) - vol(V)] =o,(!),
n n2

since

N. 0 (log n vol(V n._.) .0 (log ) vol(1) vol() = ogn

n- ol(V) 7°T

Remark. In the case that V is a general convex set with smooth boundary, the results in

(2) still hold, but with C2 replaced by

C2 = C2(r/vol(V)) ' /3  k(s)'/ds/2r

where 8V is the boundary of V, k(s) is the curvature function of arc length. For detail,

see R4nyi and Sulanke (1963), and Groeneboom (1988).

Some implications deserve further discussion here. From (3.2.5), the probability of

new observation X+.+ will fall outside the convex hull formed by the sample {X,,..., X, }
is determined by the knowledge about the number of vertices of the conves hull. This

result (i.e., (3.2.5)) holds for any distribution on Rk and any k > 1. However, to estimate

the volume of a convex body, the uniform distribution is used to create the relation like

(3.2.3).

We don't have a general theorem like Theorem 3.1 in R when k > 3 simply because

a more general version of Proposition 3.1 is not available at the moment. However, from

an applied point of view, we can always estimate the volume of a convex figure by Formula

(3.2.4), and the vertices of V will provide us with information about V \ Vn. It seems to

this author that almost all relevant information about V \ V' is within the set of vertices

of V,. This point will be further justified in Section 4 in terms of species problem.
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The following problem is of interest:

Let V be a smooth convex figure. We know that vo(1 ,0(n- ) in , and 0(n-) in

&2 (from (2) of Theorem 3.1). What are the ratios in R1* when k > 3. A less ambitious

problem is to find the increasing rate '- of these ratios {r,r 2,...}, where rk stands for

the ratio in R'.

3.3 The Missile Problems

n missiles are delivered and landing at a certain target area which is usually much

larger than the "effective area" caused by the explosion of a single missile. The "effective

area" here can be referred to as a "covered area" in the present terminology. The problcms

we are interested in are: (1) if the n + 11h missile is fired, what is the chance that this

additional missile would involve area which was not covered previously? (2) How large is

the newly covered area? (3) How many more missiles need to be fired in order to cover

90% of the target area?

To answer these types of questions, we introduce a simple model which seems to reflect

the real situation reasonably close.

Let A denote the target area where the missiles would fall. Assuming that the locations

of landing for all missiles are independent of each other and follow a certain unknown

distribution G over A, let 1', Y2,... , I' denote these n landing points. For each landing

point Y, there is a covered area B(Y,,ri) associated with 1,, where B(Y, r,) denotes the

intersection of A and the disk with center I, and random radius r,. Note that each r,

may depend upon I", but ri and ri are independent for different ij since 1' and I) are

independent. If we let Xi = B(]Y,r,) and g(Xi) -1 for all 1 < i < n, it is clear that

the current model is within the franework of our general coverage problem described in

Section 2.

The chance that the (n + 1 )t1 missile would land at "uncovered area" can be written

as

(3.3.1) P(g(X,,+ 1 ) V SIS,) ,where S, = S,(X, ... X.;P) = U(Xi.
i=1l

From Section 2, the (n-1)-estimate is

# of 1,;Y U{V,)I
(3.3.2) 1 -i ,, (yj) = 01M

nj=1n
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where

s._,., = U(.¥,}

Let us define n 1(Sn)=# of {Y.;Yj V S.,)j for brevity, and the (n-l)-estimate in

(3.3.2) can thus be written as n(S"). Applying the similar idea of (3.1.4)-(3.1.7) to then

current case, we come up with a "better estimate"

ni,(s.) + In (n -(s.) - n,(s.-,,4))
(3.3.2') =1 I

To estimate the size of newly covered area by the (n + 1)th missile, it is easy to deduce

from (ii) in Section 2 that the (n-1)-estiniate is

(333) 1V(S) (say)
n vol[X,\Sn..jl l

2i=]

where

v(,,) = (S
j3=

Similarly, one can deduce a "better estimate" which is

V1,(s.) + .E (V [(s.) - V,,(S. -,,j))
(3.3.3') j= +

ni+l

where

n

v1 (S~._ 1 ,,) = vol[X,\S.- 2,ji] for 1 < j < n
ii

and

sn-2 ,i = U {-fxh
hi
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4. Some limit theorems in species problem

In this section we shall present some large sample results for the various e;timators
derived from our interpretation in the species problem. The material of this section is
somewhat technical. The idea used and the results obtained in this section are not limited
to the species problem alone. With additional effort, it is expected to extend the idea to a

more general situation which may cover all cases discusses in Section 3. However, in order
to present the results simply and clearly we shall focus on the species problem.

Recall from Section 3.1 that {.,j = i) the th trial results on outcome ca E
{e 1,e2,... )= outcome space. If for each outcome e there is a real value y, (or a real vector
yi) associated with it, then we may ask the question: "Can one estimate the parameter
associated with the unobserved species?" The general solution to this question will become
apparent after we consider the following two simple examples.
Let Y = Yi if Xj = i. The observed data are thus {(Xi,Y,), 1 _ _ n). The outcome
space is {(ei,yii)}.

Examnle 4.1. The mean.

In this case we are interested in the conditional mean of unobserved outcomes given
{(X,Y,5))", i.e.,

(4.1) ydP(ylY) , where Y, = (WI, Y 2,... ,Y)

(4.2) P(EIY,) = pv(O;,)/1V ppi(O;n)
V, EE J

and E is any Borel set in R (or in W. if y is a vector in Kk). The conditional distribution

of P(EIY,,) can thus be written as

F(ylY.) = P((-oo,y]IY.)

if {y) are real-valued.
To estimate (4.1), we appeal to the interpretation. It is clear (from the interpretation)

that the (n-1)-estimates of

pv,(O;n)yj and pjjAO;n)
yj EE j-I
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are

n jis.-'~jY

and

i s. _, (x j) =- -
n n

n

respectively. Recall that S"-I,j' U {Xi1=A,~,j. A natural (n-1)-estimate of P(EIY,,) is

[1 s ,j(Vn~ ;]/

The final (n-1)-estimate of conditional mean (4.1) is thus

This simply tells us that, to estimate the conditional mean of unseen species one should

use sample mean of the corresponding observ-ations which occur only once in the sample.

Examp2le 4.2. The median.
In this case we are interested in the median of {yj;j 0 {X 1,...,X,) }. From the

interpretation again, it is easy to check that the (n-1)-estimate is simply the sample median

of Y, of which the corresponding Xi occurs only once in the sample.

FRom these two examples it is not difficult to answer a more general question. If we are
interested in a parameter 6=6(P(.IY)), which is a smooth function of P(.IY,,) as defined

in (4.2), the naive (n-1)-estimate is thus i=9(P(*(IY.)). Just how well is 6 as an estimate

of 0? The success of estimating (P(.IY)) by 6(P(.IY.)) depends upon the magnitude of

F Ppj(O;n), the total unobserved probability, which is estimated by nL. The following

propositions piovide some theoretical justificattion of this estimate.

Pi opitio A. Auming tha
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E2 < oo,n-i (ZP,( - P,)n1) 1 = o(1),

and

J ydP(ylY.)

stays bounded in probability, then

IJYdi(YlYt)- I YdP(YlYn)I --- 0

in probability as n --* oo.

Let

F.(y) = F(yjY.) - ,

The estimate FP(y) = F(ylY.) can be written as

-1 i. I(!i 1_ 0) ,.= # of {c,;i E A, and y, < y}

where

1 if i appears exactly once in {XI, 2.... , X.
0 otherwise

and

A, = {Xi; = 1}).

The following proposition shows that as an estimate of F.(. F,,(y) is uniformly

consistent.

Proposition 4.2. Assumin& that

n - -- (1)
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sup, ii(y) - F(y)I --- 0

in probability.

We need some lemmas to prove these two propositions.

Lemma 1. Assuming that k ? 2, then

1

Ep"(' - p,)f = 0(,-r-)

Proof. Since

( I)1 v* (1 -P)

Z ( -1..- - I -

<Z[, (1 - P. 0 + k-1-i)]

[1) c k-1pt sine I- < eZ

=7pie - p' <

This completes the proof of Lemma 1.

Lemma 1'. If EJYI < oo and k > 2, then

PI, (1- ,)"y, = 0i=1

roof. Since

(~k I kP( 1~~ ~ ~ ( 1 -pi)"li I
I (

the rest of the proof follows the same argument as that of Lemma 1.

Iemma 2. Assuming that n-(p,(1 - p,)")- o(1), te
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i i

En -pi)" = o c )

(2) [Z pv(O;r) - p( -PX~]/ZmP(1 -PX)f = O,,(l)

Proof of (1). It suffices to show

(4.6) E-71_EP( .))]2 = (
U T

To see this, it is easy to check that under the assumption, the LHS of (4.6) is bounded by

(4.7) >pap,( - p0 - - = pp,(1 - p,)(1 - p,)" +o(1)

E ,pj (1 - - p)"-'(, + , + 1

<E >I:p2 0 jPi - PA )? i + P)+05< E ,, p2 . ,,> - 0(,i

<2E p(1 - pi),) + 0(1) = 0(1) (by Lemma 1)
i i U

This completes the proof of (1). Since the proof of (2) is quite similar, we omit it.

Lemma 3. Under the assumptions n-12 (,pj(i -pi)n)-l -o(1) and EY2 < oo, we have

E (X)( 0 Zp'(O; n)yi~ = 0(1
j=1 i=1

Proo. It is easy to see

F, is._. (xj) o )

can be written as
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100n
Now,

Ef gi~n- 1) npjp ( - p . -

nn

+n~n- 1)1 +Zppz ipj1 -.~
4 ,

n n

~~Zp.(1 -pa) 1 j, +(nn - )Za,(

~Zp(1 p~)'~1+np(l p.)?+ ppA ~pi -P" Y 1/ + (1

(i follows frmLma1tEhat n smlragmeti 47.
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Note that nEPipj(1 -Pi -Pj)"-'(Pi -pj)Dyij I

i .1

5n E IYI • 0(1) (by Lemma 1')

=0(1)

It follows that (4.8) is

_< Ep,,i + 0(1) < 00.
i

This completes the proof of the lemma.

Proof of proposition 4.1

Rewrite

J ydP(yjY.) - I ydP(ylY,)

as

(4.9) 
,, = -b ;

0. + C, all

where

a. =ZpiP (0;n), b. = EPi i(0; )yi
i I

6. -- Z 'I,.yi - b., e. = - a,.
n n

iT

D. can be further written as

(4.10) a n - b-e. ,n bnC .

(an + Cn)an an +Cn (an +n )an

By Lemma 2, n-i(aL-'op(1). Since 6,,-o,,(*) by Lemma 3, and .=O,(a,,) by

Lemma 2, it follows that
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(4.11) = P Ip1)
an + en

and

(4.12) e+ bn = O,(1) .(since ba'- op(1) by assumption)(4.2)(an + Cn) an-n

The proposition follows immediately from (4.11) and (4.12).

Proof of proposition 4.2

It is easy to check that

(4.13) E (I 'P,.-I(y, <- Y)) =  s -p( -p,)"- I~y, ___ Y)

and

(4.14) E ( p.i(O; ?z)) = (I - p,)"(y < y).

From Lemma 1, it is easy to see

Ilsup, I Ep;(1 - ,)-'I (y, _< W)- Ep,(l - ,)I(Y, _< 01 = o( 1)
i 

i

Furthermore, with a similar argument as in Lemma 3, one can show that

(4.15) n E [ Y ,..1(Y; __ )_ pi(,p(o; ,)1(y, ._ Y) < Al < 00
I i

for some positive M, independent of y. Proposition 4.2 is an immediate consequence of

(4.12).
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